

Trends and Variability of Surface Solar Radiation based on satellite-derived CM SAF Climate Data Records

Jörg Trentmann, Steffen Kothe, Richard Müller, Uwe Pfeifroth, Arturo Sanchez-Lorenzo

EUMETSAT Satellite Application Facility on Climate Monitoring (www.cmsaf.eu)

- Satellite-based climate data records of regional and global coverage
- Instruments: MVIRI-SEVIRI / GERB + AVHRR + SSM/I-SSMIS
- Surface and ToA radiation, cloud information, surface albedo, water vapor, ocean surface fluxes + precipitation
- Data available: Jan 1982 to October 2016
- Resolutions from 0.03° to 1° and from 15 min to monthly means
- Data freely available: www.cmsaf.eu/wui

Surface Solar Radiation Dataset – Heliosat (SARAH)

Variables

- → Global irradiance (SIS)
- → Direct (normalized) irradiance (SID, DNI)
- → Effective cloud albedo (CAL)

Resolution

- → Spatial: 0.05° × 0.05°
- → Temporal: hourly, daily, monthly means

→ Coverage

- → Spatial: Meteosat-Prime Full disk
- → Temporal: 1983 to 2015

→ Satellites / Instruments

→ Meteosat 2 to 10 (MVIRI/SEVIRI)

→ 'Heliosat'-retrieval method

Surface Solar Radiation Dataset – Heliosat (SARAH-E)

Variables

- → Global irradiance (SIS)
- → Direct (normalized) irradiance (SID, DNI)

Resolution

- → Spatial: 0.05° × 0.05°
- → Temporal: hourly, daily, monthly means

Coverage

- → Spatial: Meteosat-Prime IODC Full disk
- → Temporal: 1983 **1999** to 2015

→ Satellites / Instruments

→ Meteosat 2 to 10 5 and 7 (MVIRI/SEVIRI)

CLARA (Clouds, Albedo, Radiation based on AVHRR)

Variables

- → Global irradiance (SIS)
- → Up- and downwelling longwave (SDL, SOL)

→ Resolution

- → Spatial: 0.25° × 0.25°
- → Temporal: daily, monthly means

→ Coverage

- → Spatial: Global
- → Temporal: 1982 to 2015

→ Satellites / Instruments

- → NOAA / Metop (AVHRR)
- 'Pinker-Laszlo'-look-up-table retrieval method

Quality assessment by comparison with BSRN

A a a a a b a a b a a b a b a a b a a b a a b a b a b a a b a a b a a b a a b a a b a a

Suitability for Climate Monitoring

Quality assessment by comparison with BSRN

Data	N _{obs}	Bias [W/m²]	MAB [W/m²]	AC
SARAH	1902	0.8	5.5	0.92
1983 – 2015, 0.05°	<i>56.111</i>	<i>0.7</i>	11.9	<i>0.</i> 95
SARAH-E	474	-1.6	7.8	0.87
1999 – 2015, 0.05°	13.717	<i>-1.7</i>	15.0	<i>0.</i> 90
CLARA	6433	-2.4	9.7	0.87
1982 – 2015, 0.25°	181.713	-2.6	19.5	<i>0.</i> 89
CERES SYN1deg	5392	2.4	8.2	0.88
2000 – 2015, 1.0°	153.479	2.3	17.5	<i>0.91</i>

- → Surface Irradiance from CM SAF Climate Data Records is very accurate
- Compared to CERES: extended temporal coverage, higher spatial resolution

Global Radiation, CM SAF, CLARA, June, 1982-2014 **Solar Radiation** Global Radiation, CM SAF, SARAH, July, 1983 - 2014 **Climatology** Longitude (deg E) Global Radiation (W/m2), CM SAF, Mean, 1983 - 2005 Global Radiation, CM SAF, 1983 - 2011, SARAH Mean Surface Irradiance, CM SAF, 1994-2005 longitude (deg E)

Sunny Days

Probability of Sunny Days / Periods, Berlin

Highest likelyhood of stable, sunny conditions beg. May

Sunny Day: Global radiation larger than 80 % of the clear-sky radiation

Globally available for many cities!

Where to go in mid June?

18 June: Probability 5-day Sunny Period

Mid June:

- High probability of sunshine in France / low probability in North-Eastern Europe
- corresponding weather situations more frequent

Cluster Analysis of daily irradiance

Grouping European Regions according to their variability of Surface Radiation

Assessment of temporal stability and trends

- Accuracy of data records stable compared to BSRN and GEBA
- Temporal trends from BSRN are reproduced.

- Positive trend of surface irradiance in satellite data records; both data records show consistent patterns
- Substantial spatial variability of the trend (consistent with GEBA)

Trend in the US (1992 to 2015)

CLARA

 Strong positive trend of surface irradiance in the CLARA data record with substantial spatial variability

Trend- and Variability-Analysis

Anomaly [W/m^2]

Trend- and Variability-Analysis

- Substantial temporal variability in decadal trends
- Moderate agreement of satelliteand surface-based estimates
- Satellite tends to underestimate

Trend- and Variability-Analysis: Seasonal

Winter

Summer

Spring

Autumn

Trend- and Variability-Analysis: Seasonal

Winter Spring

Summer

Autumn

Trend- and Variability-Analysis: Summer, Regional

North

North-West

- Decent agreement in summertime variability in Northern Europe
- Increased underestimation of trend in Eastern / Central / Southern Europe (after 2000)

Central

South

East

Trend- and Variability-Analysis: Seasonal

Winter Summer

Spring

Autumn

Summary

- → The CM SAF Surface Solar Radiation data sets (SARAH(-E), CLARA) provide high quality information on the surface solar radiation.
- → CM SAF Data Records reproduce the overall temporal trend and spatial variability (in Europe)
- → Go to Berlin in May!
- → Underestimation of the brightening by the satellite data records in Central / Southern Europe after 2000.

Extra Slides

Reflectivity, 12 UTC, 2 Sept 2008

Min. Reflectivity, R_{min}, 12 UTC, Sept 2008

Reflectivity, 12 UTC, 2 Sept 2008

Max. reflectance, R_{max} : 95 % percentile of counts during one month in the reference region

Temporal evolution of R_{max}

CM SAF The Heliosat method

The definition of the Cloud Index n:

$$n = \frac{R - R_{min}}{R_{max} - R_{min}}$$

Cloud Index, 11 UTC, 1 July 2005

- The cloud index, n, is related to the clear-sky index, k.
- The clear-sky index, k, is the ratio between the all-sky surface irradiance, G, and the clear-sky surface irradiance, G_{clear}

The cloud index, n, is related to the clear-sky index, k:

$$k = 1 - n$$

• The clear-sky index, k, is the ratio between the all-sky surface irradiance, G, and the clear-sky surface irradiance, G_{clear}:

$$G = k * G_{clear}$$

 G_{clear} can be calculated by radiation transfer calculations using the fast and accurate clear-sky model *gnu-MAGIC* (Mesoscale Atmospheric Global Irradiance Code, Mueller et al., 2009, http://sourceforge.net/projects/gnu-magic/)

